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T H E O R I E S  OF  I D E A L  P L A S T I C I T Y  W I T H  A S I N G U L A R  Y I E L D  S U R F A C E  

B. D.  A n n i n  UDC 539.3 

Specific features of  the theories of  ideal plasticity which are based on the Tresca yield criterion 
and the ma x imu m reduced stress criterion are discussed. An  analysis is carried out in terms of 
the canonical basis o f  the deviatoric stress tensor. 

1. The following statement is well known. In order that a real symmetric matrix A be orthogonally 
similar to a matrix whose elements on the main diagonal are all equal to zero, it is necessary and sufficient 
that the trace of the matrix A vanish. In particular, for a 3 • 3 matrix, this orthogonal transformation of 
similarity is not unique and depends on one parameter [1, 2]. We study this question in detail using the results 
of [1, 21. 

Let D denote a symmetric tensor of rank 2 in three-dimensional space with zero trace, and dij the 
components of this tensor in an arbitrary Cartesian coordinate system with basis kl,  k2, and ks. We consider 
elements with the unit normal vector n = (nl ,  n2, n3), for which the condition 

dn - d i jn inj  = 0 

holds. Hereafter, summation from 1 to 3 over repeat indices is performed. The set of these elements forms 
a second-order cone N. For each vector n E N, one can find vectors n ~, n"  E N such that the triad n,  n ~, 
and n"  forms an orthogonal basis. In this basis, all the diagonal elements of the matrix D vanish [1]. This 
representation of the deviator is called a canonical representation, and the orthonormal basis n,  n ~, and n"  
is called a canonical basis [2]. We construct examples of these bases. 

We denote the basis of the principal axes of the deviator by k~, k~, and k~. In this basis 

I[ dl 0 0 
D-,- 0 d2 0 

0 0 d3 

the principal values having the form [3] 

- d cos 0, d2 = d cos (0 - -r), 2~- 
dl \ 

It 
where d = ( 2 / v / 3 ) ~ 2  D, cos30 = (3X/3/2)JDI(J2D)  3/2, and J2 D = ( l /2 )d i jd i j  and jD  = ( l l3 )d i jd jkdk i  are 
the second and third invariants of the deviator. It is obvious that 

Oaij - dij, cOaij - dikdkj - 3 (I.1) 

where 6ij is the Kronecker delta and dz i = qii - (1/3)(akt~kt)$ij. 
We assume that the orthonormal basis k~, k I, kin is related to the basis k~, k~, k~ by means of the 

matrix i = Ilmiill: 

k~ = m i j k j ,  
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where mr1 = m12 = m,3 = 1/vf3, rn2, = k / ~  cosa ,  m22 = ~ cos ( a -27 r /3 ) ,  rn23 = ~ c o s ( a - 4 7 r / 3 ) ,  

m3, = ~ 7 3  cosf?, rn32 = V / ~  cos ( f ? -27 r /3 ) ,  m33 = V / 2 ~  c o s ( f ? -  47r/3), ~ = - 0 1 2 - r / 4 ,  and f? = 
- 0 / 2  + ~r/4. In this basis, we have 

r 

0 

x/2sin ( 3 0  + 4 )  

vf2c~ ( 3 0 +  4 )  v/2sin ( 3 0 +  4 )  

0 1 

1 0 

We shall call this representat ion of the  deviator a basic canonical  representation, and the  basis k~, kI2, and 
k13 a basic canonical  basis. 

Obviously, rotat ing the basis about  the principal axes through the angle =t=7r/2, one can reduce the  
deviator  to the  form 

D ,,, 

dlna.x 
0 

0 

0 0 

dmean 0 

0 dmin 

where Idm=l/> Idme = I/> Idr-i=l and dmax + dme~n + drain = 0. We shall call the above system of the principal 
axes of the  deviator D an ordered sys tem and denote its or thonormal  basis by e l ,  e2, and e3. 

We consider the  basis e l ,  e l ,  e l  defined as follows: 

i i L x Ill[ill, e i = l i je j ,  = 

f? 0 ot = ~/ -dmean/ (dmax - dmean), 
L I = 13/Vf2 - a / v ~  - l / v ~  , 

-B/v  , , / , / f  -1/v  

Using the  t ransformation formulas d!i I I A = lipljqdm, where dll  = dmax, d22 = dmean, d33 = drain, and d12 = 
d13 = d2a = 0, we infer that ,  in the  basis e~, e I, e I, the  deviator  D reduces to the form 

0 b - b  
b = ~r  

D " ,  b 0 a , 
- b  a 0 a = drain, ~ = sign (dmax). 

We shall call this representat ion of the  deviator  the first canonical representation, and the orthonormal basis 
e{, e l ,  e I the  first canonical basis. 

We consider the  orthogonal  basis e~, e~, e~: 

e~ = l~.e~, L ~ = Ill ll, l 'x = cos cos  + sin ~ sin f sin x, l~2 = s i n r  

I~3 = - s i n ~ c o s ~ b + c o s q o s i n ~ b s i n x ,  l~l = - c o s q ~ s i n r  
(1.2) 

l~' 2 = cos r cos X, I~3 = sin qa sin r + cos ~ cos r sin X, 

l~" 1 = sin qo cos X, I~2 = - sin X, l~" 3 = cos ~ cos X. 

Here, we have 0 ~ ~2 < 27r, 

tan X = 
sin qa cos3 r sin2 X - cos ~ sin 2 qa -- cos X sin X 

, cot 2r  = 
w + tan  ~ 2 cos 2 qa sin ~ sin X 

cv/2dmin 
w = ~/-dmaxdmean' ~ = sign (dmax). 

(1.3) 
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In the orthonormal basis e~', e~, and e~, for any 0 ~< ~ < 2~r the deviator D has the form 

o 

D,, ,  ~ 0 

(G) 2 + (g~)~ + (g~)~ = (J~)L 

0 

; (1.4) 

~2,G~ = J2 lZ (1.5) 
We consider the basis e{ I, ell, and e lI defined as follows: 

II II LII II e~ = l~jej, = Ill,ill, 

L II = 

7 0 

~ / ~  1 / ~  -~/v~ 

- ~ / ~  1 / ~  ~ / ~  

= ~ / - d m i . l ( d m =  - dml.),  

' 6 = C d m a x l ( d m ~ x  - drain). 

In the basis e] I, e~ I, eli, the deviator D reduces to the form 

o c - ~  ~ = ~ / - d m = d m i o / 2 ,  

D , ~  c 0 f , e = s i g n ( d m a x ) = 4 - 1 ,  

--c f 0 f = dmean. 

We shall call this representation of the deviator the second canonical representation, and the orthonormal 
basis e~ I, e II ,  e It the second canonical basis. 

Obviously, the orthogonal family of canonical bases constructed above can also be obtained by replacing 
I in (1.2) by e} I, where j = 1, 2, 3. w in (1.3) by wl = e x / 2 d m e a n / ~ / - d m a x d m i n ,  where e = sign(din=), and ej 

2. Let S be the deviatoric stress tensor, and el ,  e2, and e3 its arbitrary canonical basis, in which the 

0 s12 313 

312 0 323 

313 323 0 

deviator takes the form 

S ~ 

The Mises yield criterion J~ = k 2, where k, is the yield constant, is the sphere in the space of 312,313, and 

323: 

G + 3,~3 + & = k. ~ 

The Tresca yield criterion [4] has the form 

8(2k,2 _ j~)a _ 4(j~)2(3k2 _ j~) + 27(ji)2 = 0; (2.1) 

J~ = 322 + 3123 + s23, J~ = 23,23,3323. (2.2) 

The convex domain bounded by this surface is shown in Fig. 1 in the x, y, and z axes, where 

x = 3 1 2 / k , ,  y = 3 1 3 / k , ,  z = 3 2 3 / k , .  (2.3) 

The Mises yield criterion in these axes represents a unit sphere inscribed into the Tresca surface. The points 
at which x 2 = y2 = z 2 axe the singular (conical) points. In particular, at the point x = y = z = 2/3, the 
axis of the circular cone of the tangents of the opening span 2 axctan (3/v~)  -~ 130 o is equally inclined to the 
coordinate axes. We note that the stress state which corresponds to the singular points has equal, in absolute 
value, shear stresses: 

[8121 = 1313[- 1823[ = 2k,/3. (2.4) 
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-1 ~k _o1~  1 ~'1 

Fig. 1 Fig. 2 

where 

The following parametrization is valid for the  Tresca surface, excluding its singular points: 

s12 = k , r ( r  0) cos ~ cos 0, -~r/2 ~< 0 ~< ~r/2, 0 ~< r < 2~r, s~3 = k,r(r O) sin r cos 0, 

0 ]~ ::J::arccos ( 1 / V f 3 ) ,  s23 ---- k,r(~,O)sinO, ~b # (Tr/4)j, j = 1, 3, 5, 7, (2.5) 

( 3  - 8 1 -  72a ( - 2 7 -  3 6 a -  8a 2 -4- 8a3/21vfl-~--a)l/3~ 1/2, 
r ( r  = \ a  -- 9a(--27 36a 8a 2 A- 8a3/21V/~--+-a) 1/3 Jr / 

a = 27(cos2~bsin2r  1; - 1  ~< a < 0. 

In the first and second canonical bases, the  deviatoric stress tensor has the form 

0 T 1 - - r |  

S,- ,  ~'1 0 V2 

--rl r2 0 

The Tresca yield criterion (2.1) in the ( n ,  ~'2) plane is written as follows: 

( - 2 k ,  ~ + T? - 3T2k, - Tg)(--2k,  ~ + ~? + aT2k, - ~ ) ( 8 ~ ?  + ~ - 4k, ~) = o. 

This piecewise-smooth curve, which consists of the  parts of an ellipse (the lateral sides) and the parts of the 
hyperbolas, is shown in Fig. 2 for k, = 1 by the solid curve, and the dashed curve refers to the Mises ellipse: 

2T~ + ~ = k. ~. 

We denote the plastic strain-rate tensor by EP and its components in the canonical basis of the tensor 
S by (i j; let 

(11 -{- (22 "b (33 ---- 0. (2.6) 

Assuming that  the associated law of plastic flow is valid, using the right-hand side of (2.1) as the plastic 
potential, and bearing in mind  (1.1), we obtain 

"~ (12 ---- A(gs12 A- uS13S23), (2.7) 
2 

denotes the cyclic permuta t ion  of the indices, g = 

1 A 2 
(11 = ~(~12 + ~ 3 -  2~23), / 

3( 

where A is an arbitrary factor, the symbol / i %  
3 ~--- 2 

-12[(j~) 2 - 6k, J~2 s + 8},41, and ~ = 54J~. 
At the nonsingular points of the. Tresca surface (2.1), the condition (2.4) is not satisfied and, therefore, 

the components of the plastic strain tensor (11, (22, (33 cannot vanish simultaneously. This means that  the 
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canonical basis of the stress tensor does not coincide with that  of the plastic strain tensor. In this case, 
according to equality (1.1), the tensors S and /~P are coaxial. It follows from (2.5) and (2.7) that,  for all 
nonsingular points at the Tresca surface, the following condition holds: 

det H~ij [I = O. (2.8) 

Hence, one of the eigenvalues of the tensor EP is zero and the other two eigenvalues are w and - w  by virtue 
of (2.6), where w # 0 by virtue of (2.7); therefore, the plane-strain state is realized [5]. Thus,  the tensor (/~p)2 
has a nonmultiple zero eigenvalue and a multiple eigenvalue w 2. Let r be the unit eigenvector of the tensor 
(Ep)2 which corresponds to the zero eigenvaJue. The representation [6] 

( k p ) 2  = _ ,. o , )  (2 .9)  

is valid. Here I is the identity tensor and the symbol | denotes the dyadic product. 
At the singular points of the Tresca surface, the condition (2.4) is satisfied; therefore, two of the 

principal stresses coincide and, consequently, only one of the principal axes S is defined uniquely. We require 
that  this principal axis coincide with one of the principal axes of the tensor EP, which is the condition that  
relates the tensors S and/~P at the singular points of the Tresca surface. As an example, we consider the case 

$ 1 2  = 813  = 823 ---- 2k./3.  (2.10) 

The eigenvalues of the tensor S are A~ = 4k. /3 ,  A t = - 2 k . / 3 ,  and A~ = - 2 k . / 3 .  The  eigenvector which 
corresponds to the eigenvalue A~ has the form n = (1 /v~,  1/vf3, 1 /v~) .  For the tensor S having a multiple 
eigenvalue, the following representation [6] is valid: 

S -- 2 k . ( n |  3 , ) .  (2.11) 

Let A be the nonmultiple eigenvalue of the tensor/~P; then from the equality 

/~n. n = An (2.12) 

we have ~11 + ~12 + ~x3 = A, ~12 + ~22 + ~23 = A, and ~13 + ~23 + (33 = A. The condition of the positive 
dissipation sij~ij > 0 and (2.8) imply that  A > 0. 

The equalities (2.11) and (2.12) are valid in an arbitrary coordinate system and they were derived 
using the different assumptions in [5]. 

We note that,  in the case defined by the equality (2.10), the relations [A~ -A~I = 2k. and I A~ -A~t = 2k, 
are valid. This means that  the Haar-von Ks163 condition of the complete yielding [7] is realized, which holds 
also at all the singular points [see (2.4)] of the Tresca surface. 

3. We examine the question as to when the conditions of complete plasticity (2.10) are realized in a 
certain domain of a body. In view of the equality (2.11), the stress tensor in an arbitrary Cartesian coordinate 
system (Xl, x2, x3) becomes aij = 2k.(pr + ninj). Using the equilibrium equations, we have the following 
system to determine the functions p --- p(xl ,  x2, x3) and ni = hi(X1, x2, x3), where i = 1, 2, 3: 

p,i + njni,j + nins,s = 0 (i, j ,  s = 1, 2, 3); (3.1) 

+ + = 1. (3.2) 

Here and henceforth, the comma denotes the derivative with respect to the coordinates. A series of properties 
of system (3.1), (3.2) was considered in [5], and the group analysis of this system by the Lie-Ovsyannikov 
method [8] was performed in [9]. We give the complete description of the partially invariant solution, for which 

ni = gi(p), p = p(Xl, X2, X3), / = 1, 2, 3. (3.3) 

Substituting (3.3) into (3.1), we obtain 

(p~fij + Nigj)'p,i = O. (3.4) 
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Fig. 3 Fig. 4 

Hereafter, the prime denotes the derivative with respect to p. The  compatibili ty condition of system (3.4) 
implies that  

(N~) 2 + (N2) 2 + (g3) 2 = 1. (3.5) 

Let M = M(t )  (0 <~ t ~ T be an arbitrary, twice differentiable function; moreover, M 2 + 3;/2 < 1 and 
M + M # 0. Here and henceforth, the dot denotes differentiation with respect to t. Relations (3.2) and (3.5) 
are satisfied if one assumes that  

N1 = ul(t) = 21;/cos t + M s i n t ,  

N3 = u3(t) = (1 - M 2 - / 1 ) / 2 )  U2, 

N2 = v2(t) = 3Y/sin t - M c o s t ,  

t 
p = P(t)  = / ( M  + 217/)(1 - M2)l/2 

o "''il - M2 - 21)/5)I/5 dt. 

Introducing (3.6) into (3.1) and integrating the first two equations, we obtain 

:glll(t) + X212(•) + X313(t) = g(t),  

where 

(3.6) 

(3.7) 

ll(t) = (VlV3)'(P + v2) " -  (vlu2)'(v2v3)', /2(t) = (v2vs)'(P + u2) " -  (VlV2)'(VlV3)', 

/3(t) = - ( P  + v2) '(P + v2)'+ (Vl/~'2 + /)2Vl) 2, 

and g(t) is an arbitrary differentiable function. The  equality (3.7) defines implicitly the function t = 
t(zl ,  z2, z3). 

The constructed solution involves two arbitrary functions of one variable. 
If one sets t = to = const in (3.7), this equat ion defines a plane in the (Xl, x2, x3) space on which 

all the  components of the stress tensor are constant.  In a particular case where g(p) = O, this plane passes 
through the coordinate origin. This solution can be used to describe the limiting state of a body bounded by 
the planes. 

4. We consider the yield criterion of the m a x i m u m  reduced stress [10] [Smax] = k, ,  where Sm~x is the 
max imum absolute value of the eigenvalues of the deviatoric stress tensor S. Substi tuting k, 2 into the cubic 
equation, whose roots are the squared eigenvalues of S, we obtain 

(gS 3 + g ~ k , -  k3)(J  ff - J2Sk, + k 3) = O. (4.1) 

The  convex domain bounded by this surface is shown in Fig. 3 in the x, y, and z axes [see (2.3)]. The 
surface (4.1) is inscribed into the Mises sphere. The  points at which this surface cuts the coordinate axes are 
singular. The  conical surfaces which correspond to these points split up into pairs of planes. 

In the first and second canonical bases [see (2.5)], the criterion of the max imum reduced stress assumes 
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the form 

(2T2v2 + 2r12k, + v~k, - k,a)(2r2r2 - 2r12k, - r~k, + k, 3) = 0. 

The given piecewise-smooth curve (for k, = 1) is shown in Fig. 4. The dashed curve refers to the Mises ellipse. 
The associated law of plastic flow with potential (4.1) leads to the equalities (2.7), where ~ = - 2 k , ( J ~ -  

k. 2) and u = 2J  s .  
For the nonsingular points of the surface (4.1), the tensors S and J~P are coaxial, and, for the nonsingular 

points at which the condition Is121 = ]s13] - ]s231 -- k, is satisfied, the canonical basis of the stress tensor is 
also the canonical basis of the plastic strain tensor. 

We now establish the relation between the tensors S and/~P at the singular points of the surface (4.1). 
As an example, we consider the case where sa2 = k.; s13 = 0; s23 = 0. The eigenvalues of the tensor S are k., 
- k , ,  and 0. 

We assume that the plastic strain rate tensor/~P satisfies the incompressibility condition (2.6) and is 
coaxial with the tensor S. The representation [11] is then valid 

where a and/3 are arbitrary constants, and a > 0 by virtue of the condition of the positive dissipation. 
In concluding, we note that the detailed description of the set of deviators with one common principal 

direction (see Sac. 2) can be found in [12]. 
This work was supported by the project "Universities of Russia - -  Fundamental Research" (Grant No. 

1795). 
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